4-Channel I2C Switches/Multiplexer

Abstract

General Description The MAX7367/MAX7368/MAX7369 bidirectional, fourchannel ${ }^{2} \mathrm{C}$ switches/multiplexer expand the main $\mathrm{I}^{2} \mathrm{C}$ bus up to four extended buses. The MAX7369 1:4 multiplexer connects the main $\mathrm{I}^{2} \mathrm{C}$ bus to one channel at a time. The MAX7367/MAX7368 four-channel switches connect the main ${ }^{2} \mathrm{C}$ bus to one or more channels at a time. These devices isolate bus loading by extending the ${ }^{2}{ }^{2} \mathrm{C}$ bus onto different channels. The MAX7367/MAX7368/ MAX7369 allow more devices to be interconnected to a master controller and multiple devices with the same ${ }^{2}{ }^{2} \mathrm{C}$ address to communicate to a master. The channels are selected through the main $I^{2} \mathrm{C}$ bus by writing to the internal control register of the device.

Any device connected to an I2C bus can transmit and receive signals. The MAX7367/MAX7368/MAX7369 are transparent to signals sent and received at each channel, allowing multiple masters. These devices are compatible with the $1^{2} \mathrm{C}$ protocol of clock stretch, synchronization, and arbitration in case multiple masters address the bus at the same time. All devices are set to the default state during initial power-up. The MAX7367/MAX7368 have a RESET input allowing external circuitry to set the MAX7367/MAX7368 to its default state anytime after the device has powered up. The MAX7367/MAX7369 have interrupt inputs, allowing devices on the extended bus to send an interrupt signal to the master on the main bus. The MAX7367/MAX7369 are available in 20-pin TSSOP packages, and the MAX7368 is available in a 16-pin TSSOP package. All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

Servers
RAID
Cellular Phones
Base Stations
PCs
Multimedia Electronics
SAN/NAS
Features

- Four-Channel, Bidirectional Bus Expansion
- Voltage-Level Translation
- Low $6 \mu \mathrm{~A}$ (typ) Supply Current, $0.1 \mu \mathrm{~A}$ (typ) Standby Current
- Low 16Ω (typ) On-Resistance
- Channel Selection Through I ${ }^{2}$ C
- ${ }^{2}$ C-Compatible Normal or Fast Mode
- Device Address Selection

Up to Four Addresses (MAX7367)
Up to Eight Addresses (MAX7368/MAX7369)

- Bus-Loading Isolation
- Support Clock Stretch, Synchronization, and Arbitration
- Hot Insertion
- 2.3V to 5.5V Supply Voltage Range
- 5V-Tolerant Inputs
- Interrupt from Extended Buses (MAX7367/MAX7369)
- Hardware Reset (MAX7367/MAX7368)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX7367EUP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	U20-3
MAX7368EUE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP	U16-1
MAX7369EUP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	U20-3

+Denotes lead-free package.
Pin Configurations

```
TOP VIEW
```


Pin Configurations continued at end of data sheet.

4-Channel I2C Switches/Multiplexer

ABSOLUTE MAXIMUM RATINGS

VDD to GND	.-0.3V to +6.0V
All Other Pins to GND-0.3V to +6.0V	
Input Currents	
VDD	.100mA
GND	. 100 mA
All Input Pins	$\pm 20 \mathrm{~mA}$
Output Current	. 25 mA

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
20-Pin TSSOP (derate $11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	879.1 mW
16-Pin TSSOP (derate $9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	754.7 mW
Operating Temperature Range- $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature .. 150	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ead Temperature (soldering, 10s)	$+300^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (3.3V SUPPLY)

$\left(V_{D D}=2.3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
Supply Voltage	VDD		2.3		3.6	V
Standby Current	IStB	No load, all inputs $=V_{D D}$ or $G N D, V_{D D}=3.6 \mathrm{~V}$, all channels disabled		0.1	1	$\mu \mathrm{A}$
Supply Current	IDD	$\begin{aligned} & \text { No load, all inputs }=V_{D D} \text { or GND, } \\ & \text { fSCL }=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \\ & \text { all channels disabled } \end{aligned}$		6	30	$\mu \mathrm{A}$
Power-On-Reset (POR) Voltage	VPOR	$V_{\text {DD }}$ rising		1.4	2.1	V
Power-On-Reset Hysteresis	VHYST			0.4		V
INPUT SCL, INPUT/OUTPUT SDA						
Low-Level Input Voltage	VIL		0		$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
High-Level Input Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		5.5	V
Low-Level Output Current	IOL	VOL $=0.4 \mathrm{~V}$	3	30		mA
		V OL $=0.6 \mathrm{~V}$	6	50		
Input Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input Capacitance	Cl	All inputs = GND		15		pF
SELECT INPUTS A2, A1, A0, INT0-INT3, $\overline{\text { RESET }}$						
Low-Level Input Voltage	VIL		0		$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
High-Level Input Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		5.5	V
Input Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input Capacitance	CI	All inputs = GND		5		pF

4-Channel I2C Switches/Multiplexer

ELECRTICAL CHARACTERISTICS (3.3V SUPPLY) (continued)

$\left(V_{D D}=2.3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} D=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
PASS GATE						
Switch On-Resistance	Ron	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{l} \mathrm{O}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5	16	30	Ω
		$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{IO}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	7	23	55	
Switch Output Voltage	VPASS	$\mathrm{V}_{\mathrm{I}}(\mathrm{SW})=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{IO}=-100 \mu \mathrm{~A}$	1.6	1.9	2.8	V
		$\mathrm{V}_{\mathrm{I}}(\mathrm{SW})=\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7V, $\mathrm{IO}=-100 \mu \mathrm{~A}$	1.1		2.0	
		$\mathrm{V}_{\mathrm{I}}(\mathrm{SW})=\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{IO}=-100 \mu \mathrm{~A}$		1.5		
Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input/Output Capacitance	ClO^{1}	All inputs = GND		6		pF
INT OUTPUT						
Low-Level Output Current	lOL	$\mathrm{VOL}=0.4 \mathrm{~V}$	3			mA
High-Level Output Current	IOH				1	$\mu \mathrm{A}$

ELECRTICAL CHARACTERISTICS (5V SUPPLY)

$\left(\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
Supply Voltage	$V_{D D}$		4.5		5.5	V
Standby Current	ISTB	No load, all inputs $=\mathrm{V}_{\mathrm{DD}}$ or $G N D, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, all channels disabled		0.3	1	$\mu \mathrm{A}$
Supply Current	IDD	No load, all inputs = VDD or GND, fSCL = $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, all channels disabled		12	50	$\mu \mathrm{A}$
Power-On-Reset Voltage	VPOR	$V_{\text {DD }}$ rising		1.4	2.1	V
POR Hysteresis	VHYST			0.4		V
INPUT SCL, INPUT/OUTPUT SDA						
Low-Level Input Voltage	VIL		0		$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
High-Level Input Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		5.5	V
Low-Level Output Current	IOL	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	30		mA
		$\mathrm{VOL}=0.6 \mathrm{~V}$	6	50		
Input Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input Capacitance	C	All inputs = GND		15		pF
SELECT INPUTS A2, A1, A0, $\overline{\text { INT0-INT3, }} \overline{\text { RESET }}$						
Low-Level Input Voltage	VIL		0		$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
High-Level Input Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		5.5	V

4-Channel I2C Switches/Multiplexer

ELECRTICAL CHARACTERISTICS (5V SUPPLY) (continued)
$\left(V_{D D}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Input Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input Capacitance	Cl	All inputs = GND		5		pF
PASS GATE						
Switch On-Resistance	RON	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{IO}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	4	12	24	Ω
Switch Output Voltage	VPASS	$\left.V_{I(S W}\right)=V_{D D}, l_{0}=-100 \mu A$	2.6	3.6	4.5	V
Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
Input/Output Capacitance	ClO_{1}	All inputs = GND		6		pF
İNT OUTPUT						
Low-Level Output Current	IOL	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	3			mA
High-Level Output Current	IOH				1	$\mu \mathrm{A}$

TIMING CHARACTERISTICS (Figure 1)

(V DD $=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay from SDA To SD_ or SCL to SC_	tpd	(Note 2)			0.3	ns
SCL Clock Frequency	fscl		0		400	kHz
Bus Free Time Between a STOP and START Condition	tBUF	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.7			$\mu \mathrm{S}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	1.3			
Hold Time (Repeated) START Condition (after this period, the first clock pulse is generated)	thD;STA	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.0			$\mu \mathrm{s}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	0.6			
Low Period of the SCL Clock	tıow	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.7			$\mu \mathrm{s}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	1.3			
High Period of the SCL Clock	thigh	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.0			$\mu \mathrm{s}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	0.6			
Setup Time for a Repeated START Condition	tSU;STA	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.7			$\mu \mathrm{s}$
		fSCL $=400 \mathrm{kHz}$	0.6			
Setup Time for STOP Condition	tSu;STO	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.0			$\mu \mathrm{s}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	0.6			
Data Hold Time (Note 3)	thD;DAT	$\mathrm{fSCL}=100 \mathrm{kHz}$	0		3.45	$\mu \mathrm{s}$
		$\mathrm{fSCL}=400 \mathrm{kHz}$	0		0.9	
Data Setup Time	tSU;DAT	$\mathrm{fSCL}=100 \mathrm{kHz}$	250			ns
		$\mathrm{fSCL}=400 \mathrm{kHz}$	100			
Rise Time of Both SDA and SCL Signals	t_{r}	$\mathrm{fSCL}=100 \mathrm{kHz}$			1000	ns
		$\mathrm{fSCL}=400 \mathrm{kHz}($ Note 4)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$		300	

4-Channel I2C Switches/Multiplexer

TIMING CHARACTERISTICS (Figure 1) (continued)

($\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Fall Time of Both SDA and SCL Signals	tf	$\mathrm{fSCL}=100 \mathrm{kHz}$			300	ns
		fsCL $=400 \mathrm{kHz}($ Note 4)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$		300	
Capacitive Load for Each Bus Line	Cb	(Note 5)			400	pF
Pulse Width of Spikes Suppressed	tSP				50	ns
Data Valid Time from High to Low	tvd;DATL	(Note 6)			1	$\mu \mathrm{s}$
Data Valid Time from Low to High	tVd;DATH	(Note 6)			0.6	$\mu \mathrm{s}$
Data Valid Acknowledge	tvd;ACK				1	$\mu \mathrm{s}$
$\overline{\text { INT }}$ (Figure 2)						
$\overline{\text { INT_ }}$ to $\overline{\text { INT }}$ Active Valid Time	tiv				4	$\mu \mathrm{s}$
$\overline{\mathrm{INT}}$ _ to $\overline{\mathrm{INT}}$ Inactive Delay Time	tIR				2	$\mu \mathrm{s}$
Low-Level, Pulse-Width Rejection or INT_ Inputs	tw(REJ)L		1			$\mu \mathrm{s}$
High-Level, Pulse-Width Rejection or INT_ Inputs	tw(REJ)H		0.5			$\mu \mathrm{s}$
RESET (Figure 3)						
Pulse-Width Low Reset	twL(RST)			4		ns
Reset Time (SDA Clear)	trST		500			ns
Recovery to Start	trec; ${ }^{\text {STA }}$		0			ns

Note 1. All parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the specified temperature range.
Note 2. Pass gate propagation delay is calculated from 20Ω (typ) Ron and the 15 pF load capacitance. Not production tested.
Note 3. A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the $\mathrm{V}_{\text {IL }}$ of the SCL) in order to bridge the undefined region of SCL's falling edge.
Note 4. $\mathrm{Cb}=$ total capacitance of one bus line in pF .
Note 5. Guaranteed by design.
Note 6. Measurements taken with a $1 \mathrm{k} \Omega$ pullup resistor and 50 pF load.

Figure 1. 2-Wire Serial-Interface Timing Diagram

4-Channel I2C Switches/Multiplexer

Figure 2. INT Timing Diagram

Figure 3. $\overline{R E S E T}$ Timing Diagram

4-Channel I2C Switches/Multiplexer

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

4-Channel I2C Switches/Multiplexer

PIN			NAME	FUNCTION
MAX7367	MAX7368	MAX7369		
1	1	1	A0	Device Address Bit 0 (LSB)
2	2	2	A1	Device Address Bit 1
3	3	-	$\overline{\text { RESET }}$	Active-Low Reset Input
4	-	4	INTO	Channel 0 Active-Low Interrupt Input. A logic-low $\overline{\mathrm{NTO}}$ asserts $\overline{\mathrm{INT}}$. If not used, pull up INTO through a resistor to V_{DD}.
5	4	5	SD0	Channel 0 Serial Data
6	5	6	SC0	Channel 0 Serial Clock
7	-	7	$\overline{\text { INT1 }}$	Channel 1 Active-Low Interrupt Input. A logic-low $\overline{\text { INT1 }}$ asserts $\overline{\text { INT. If not }}$ used, pull up INT1 through a resistor to $V_{D D}$.
8	6	8	SD1	Channel 1 Serial Data
9	7	9	SC1	Channel 1 Serial Clock
10	8	10	GND	Ground
11	-	11	$\overline{\text { INT2 }}$	Channel 2 Active-Low Interrupt Input. A logic-low INT2 asserts $\overline{\text { INT }}$. If not used, pull up INT2 through a resistor to V_{DD}.
12	9	12	SD2	Channel 2 Serial Data
13	10	13	SC2	Channel 2 Serial Clock
14	-	14	INT3	Channel 3 Active-Low Interrupt Input. A logic-low $\overline{\mathrm{INT}}$ asserts $\overline{\mathrm{INT}}$. If not used, pull up INT3 through a resistor to V_{DD}.
15	11	15	SD3	Channel 3 Serial Data
16	12	16	SC3	Channel 3 Serial Clock
-	13	3	A2	Device Address Bit 2
17	-	17	$\overline{\text { INT }}$	Active-Low, Open-Drain Interrupt Output. Connect a pullup resistor to VDD.
18	14	18	SCL	Main Serial Clock
19	15	19	SDA	Main Serial Data
20	16	20	VDD	Power Supply. Bypass to GND with $0.1 \mu \mathrm{~F}$ capacitor.

4-Channel I2C Switches/Multiplexer

69عLXVW/89عLXVW/L9ELXVW

4-Channel I2C Switches/Multiplexer

4-Channel I2C Switches/Multiplexer

69عLXVW/89عLXVW/L9ELXVW

4-Channel I2C Switches/Multiplexer

Detailed Description

The MAX7367/MAX7368/MAX7369 bidirectional, fourchannel $I^{2} \mathrm{C}$ switches/multiplexer expand the main $I^{2} \mathrm{C}$ bus up to four extended buses. The MAX7369 is a 1:4 multiplexer that connects the main $I^{2} \mathrm{C}$ bus to one channel at a time. The MAX7367/MAX7368 are four-channel switches that can connect the main $I^{2} \mathrm{C}$ bus to one or more channels at a time. These devices isolate bus loading by separating available ${ }^{2} \mathrm{C}$ devices into groups on the channels. The total loading capacitance of the main bus plus those of the connected channel must not exceed 400pF. The extended buses are connected or disconnected through the main $I^{2} \mathrm{C}$ bus by writing to the control register of the MAX7367/MAX7368/MAX7369.
Any device connected to an $I^{2} \mathrm{C}$ bus can transmit and receive signals. The MAX7367/MAX7368/MAX7369 are transparent to signals sent and received at each channel, allowing multiple masters on the buses. These devices are compatible with the $I^{2} \mathrm{C}$ protocol of clock stretch, synchronization, and arbitration in case of multiple masters addressing the bus at the same time. The MAX7367/MAX7368 have a RESET input that allows external circuitry to set the MAX7367/MAX7368 to its default state anytime after the device has powered up. The MAX7367/MAX7369 have interrupt inputs, allowing devices on the extended bus to send an interrupt signal to the master on the main bus.

Device Address

The MAX7367/MAX7368/MAX7369 have selectable device addresses through external inputs. The MAX7367 slave address consists of 5 fixed bits (A6-A2, set to 11100), followed by 2 pin-programmable bits (A1 and A0), as shown in Figure 4. The MAX7368/ MAX7369 slave address consists of 4 fixed bits (A6-A3, set to 1110), followed by 3 pin-programmable bits (A2, A1 and A0), as shown in Figure 5. The most significant address bit (A6) is transmitted first, followed by the remaining bits. The addresses A2 (for MAX7368/ MAX7369), A1, and AO can also be driven dynamically if required, but the values must be stable when they are expected in the address sequence.

Control/Interrupt Register
There is a control/interrupt register inside the MAX7367/ MAX7369 (Figures 6 and 8). There is a control (only) register inside the MAX7368 (Figure 7). Use the main ${ }^{12} \mathrm{C}$ bus to write or read from this register. Following the successful acknowledgement of the slave address, the
master bus sends a byte or the master bus receives a byte from/to the MAX7367/MAX7368/MAX7369. The last 3 bits (for the MAX7369) or 4 bits (for the MAX7367/ MAX7368) of the byte are stored in the control/interrupt register (B 0 to B 2 or B 0 to B 3) for channel selection. If multiple bytes are received, only the last byte received is saved. The first four bits of the register represent the interrupt condition (for the MAX7367/MAX7369 only).

Figure 4. MAX7367 Slave Address

Figure 5. MAX7368/MAX7369 Slave Address

Figure 6. MAX7367 Control/Interrupt Register

4-Channel I2C Switches/Multiplexer

Figure 7. MAX7368 Control Register

Figure 8. MAX7369 Control/Interrupt Register

Channel Selection

Each channel selected contains an SD_ and SC_ pair. Select a channel by writing a control byte after a successful acknowledge of the slave address. The last 4 bits of the control byte determine which channel(s) is selected for the MAX7367/MAX7368 as shown in Table 1. The last 3 bits of the control byte determine which channel is selected for the MAX7369 as shown in Table 2. The selected channels are activated after the stop condition. When a channel is selected, the respective SD_SC_ pair is logic-high, ensuring no false conditions occur on the bus.

Interrupt Logic (MAX7367/MAX7369)

The MAX7367/MAX7369 have four interrupt inputs, one for each channel, and one $\overline{\mathrm{INT}}$ output. The INT output is an open-drain output that requires a pullup resistor. The INT output is asserted by a low-logic signal on any of the $\overline{\mathrm{NT}} \mathbf{I}_{-}$ inputs, and it is deasserted only when all the INT_ inputs are logic-high. Bits $4-7$ of the MAX7367/MAX7369 control/interrupt register store the state of the INT_ for each channel as shown in Table 3 and Figures 6 and 8. The logic level of $\overline{I N T}$ _ is not latched. Drive the respective INT_ input high to remove the interrupt condition for the channel. An interrupt can occur on any channel, regardless of whether it is selected or not selected.

After a device generates an interrupt on one of the channels, the interrupt input is loaded into the control/interrupt register when a read is performed. To determine which device is generating the interrupt, read the contents of the control/interrupt register to determine which channel is issuing the interrupt, then write the appropriate command to the control/interrupt register to select the interrupted channel. Read from all devices on the interrupted channel to determine the exact source of the interrupt.

Table 1. MAX7367/MAX7368 Control Bits for Channel Selection

CONTROL BIT	COMMAND
B0	$0=$ Channel 0 disabled (default) $1=$ Channel 0 enabled
B1	$0=$ Channel 1 disabled (default) $1=$ Channel 1 enabled
B2	$0=$ Channel 2 disabled (default) $1=$ Channel 2 enabled
B3	$0=$ Channel 3 disabled (default) $1=$ Channel 3 enabled

Table 2. MAX7369 Control Bits for
Channel Selection

B2	B1	B0	COMMAND
0	0	0	No channel selected (default)
0	X	X	No channel selected
1	0	0	Channel 0 selected
1	0	1	Channel 1 selected
1	1	0	Channel 2 selected
1	1	1	Channel 3 selected

Table 3. MAX7367/MAX7369 Interrupt Indicator Bits

INTERRUPT BIT	STATE
INT0	$0=$ No channel 0 interrupt (default) $1=$ Channel 0 interrupt
INT1	$0=$ No channel 1 interrupt (default) $1=$ Channel 1 interrupt
INT2	$0=$ No channel 2 interrupt (default) $1=$ Channel 2 interrupt
INT3	$0=$ No channel 3 interrupt (default) $1=$ Channel 3 interrupt

4-Channel I2C Switches/Multiplexer

RESET Input (MAX7367/MAX7368)

The MAX7367/MAX7368 feature an active-low RESET input. When $\overline{R E S E T}$ is driven low for more than $4 n s$, the MAX7367/MAX7368 reset the internal register and $I^{2} \mathrm{C}$ state machine to their default states, allowing a master to recover from a bus fault condition.

Power-On Reset (POR)

When power is applied to VDD, internal POR circuitry holds the MAX7367/MAX7368/MAX7369 in a reset state until VDD has reached the VPOR threshold. At this point, the reset condition is released, and the MAX7367/ MAX7368/MAX7369 register and $\mathrm{I}^{2} \mathrm{C}$ state machine are initialized to their default states (all zeroes), causing all the channels to be deselected.

Voltage Translation

The MAX7367/MAX7368/MAX7369 can be used as a voltage translator from the main bus to the extended buses. The output voltage (VPASS) is limited by the supply voltage (VDD) (see the Typical Operation Characteristics). For the MAX7367/MAX7368/MAX7369 to be used as a voltage translator, the VPASS voltage should be lower than or equal to the lowest bus voltage.

I2C Interface

The MAX7367/MAX7368/MAX7369 feature an I2C-compatible, 2 -wire serial interface consisting of a bidirectional serial-data line (SDA) and a serial-clock line (SCL). The master (typically a microcontroller) initiates data transfer on the bus and generates the SCL.

Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high (Figure 9).

Start and Stop Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning the SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 10).

Acknowledge Bit

Successful data transfers are acknowledged with an acknowledge bit (A) or a not-acknowledge bit (NA). Both the master and the MAX7367/MAX7368/MAX7369 (slave) generate acknowledge bits. To generate an acknowledge, the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the
high period of the clock pulse (Figure 11). In the case of an unsuccessful data transfer, the receiver allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.
Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer happens if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the master should reattempt communication at a later time.

Figure 9. Bit Transfer

Figure 10. Start and Stop Conditions

Figure 11. Acknowledge

4-Channel I2C Switches/Multiplexer

Abstract

Serial Addressing A master initiates communication with a slave device by issuing a START condition followed by a slave address byte. The slave address byte consists of 7 address bits and a read/write bit (R / W). When idle, the MAX7367/MAX7368/MAX7369 continuously wait for a START condition followed by its slave address. After recognizing a start condition followed by the correct address, the MAX7367/MAX7368/MAX7369 are ready to accept or send data. The least significant bit (LSB) of the address byte (R/W) determines whether the master is writing to or reading from the MAX7367/MAX7368/ MAX7369 (R/W $=0$ selects a write command, $R / \bar{W}=1$ selects a read command as shown in Figures 12 and 13). After receiving the proper address, the MAX7367/MAX7368/MAX7369 (slave) issue an ACK by pulling SDA low for one clock cycle.

Applications Information

Repeated Slave Addresses
The MAX7367/MAX7368/MAX7369 allow systems to reuse slave addresses individually on each channel of the extended bus. To reuse slave addresses on the extended bus channels of the MAX7367/MAX7368, ensure no more than one channel with a reused address is selected at the same time.

Power-Supply Considerations

The MAX7367/MAX7368/MAX7369 operate from a +2.3 V to +5.5 V power-supply voltage. Good powersupply decoupling is needed to maintain the performance of these parts. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ surface-mount ceramic capacitor. Mount the bypass capacitor as close as possible to the device.

Figure 12. Read Command

Figure 13. Write Command

4-Channel I2C Switches/Multiplexer

${ }^{2} \mathrm{C}$ requires pullup resistors to Provide Resistors level to data and clock lines. There are tradeoffs between power dissipation and speed, and a compromise must be made in choosing pullup resistor values. Every device connected to the bus introduces some capacitance even when the device is not in operation. $1^{2} \mathrm{C}$ specifies 300 ns rise times to go from low to high (30% to 70%) for fast mode, which is defined for a data rate of 400 kbps (refer to ${ }^{2} \mathrm{C}$ specifications for details). In order to meet the rise time requirement, choose the pullup resistors such that the rise time (tr $=$ 0.85 Rpullup \times Cbus) is less than 300 ns. For a bus
capacitance of 400pF, choose a pullup resistor less than 880Ω. Often $\mathrm{I}^{2} \mathrm{C}$ devices work when the maximum specified rise time is exceeded. However, if the rise times become too slow, the devices on the bus do not recognize the command signals. Optional resistors (24Ω) in series with SDA and SCL protect the device inputs from high-voltage spikes on the bus lines and also minimize crosstalk and undershoot of the bus signals.

Chip Information
PROCESS: BiCMOS

Pin Configurations (continued)

TOP VIEW

4-Channel I2C Switches/Multiplexer

69عLXVW/89عLXVW/L9ELXVW

4-Channel I2C Switches/Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Page changed at Rev 1: 1

